Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

نویسندگان

  • Liviu Feller
  • Yusuf Jadwat
  • Razia A G Khammissa
  • Robin Meyerov
  • Israel Schechter
  • Johan Lemmer
چکیده

The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS

At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...

متن کامل

Biological responses of anodized titanium implants under different current voltages.

The oxide layer of a titanium surface is very stable, and seems to result in excellent biocompatibility and successful osseointegration. The purpose of this study was to investigate the effects of high anodic oxidation voltages on the surface characteristics of titanium implants and the biologic response of rabbit tibiae. Bone tissue responses were evaluated by removal torque tests and histomor...

متن کامل

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading

Clark, Paul A., Anthony Rodriguez, D. Rick Sumner, Mohammad A. Hussain, and Jeremy J. Mao. Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading. J Appl Physiol 98: 1922–1929, 2005. First published January 7, 2005; doi:10.1152/japplphysiol.01080.2004.—Titanium implants commonly used in orthopedics and dentistry integrate into host bone by a compl...

متن کامل

Surface modification for titanium implants by hydroxyapatite nanocomposite

Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the s...

متن کامل

Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading.

Titanium implants commonly used in orthopedics and dentistry integrate into host bone by a complex and coordinated process. Despite increasingly well illustrated molecular healing processes, mechanical modulation of implant bone ingrowth is poorly understood. The objective of the present study was to determine whether micromechanical forces applied axially to titanium implants modulate bone ing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015